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Abstract

A numerical investigation is presented for the peak sidelobe level (PSL) of Legendre
sequences, maximal length shift register sequences (m-sequences), and Rudin-Shapiro
sequences. The PSL gives an alternative to the merit factor for measuring the collective
smallness of the aperiodic autocorrelations of a binary sequence. The growth of the PSL
of these infinite families of binary sequences is tested against the desired growth rate
o(vnlnn) for sequence length n. The claim that the PSL of m-sequences grows like
O(y/n), which appears frequently in the radar literature, is concluded to be unproven
and not currently supported by data. Notable similarities are uncovered between the
PSL and merit factor behaviour under cyclic rotations of the sequences.

Keywords aperiodic autocorrelation, peak sidelobe level, binary sequence, merit factor,
Legendre sequence, maximal length shift register sequence, Rudin-Shapiro sequence

1 Introduction

A binary sequence of length n is an n-tuple A = (ag, a1, ...,a,-1) where a; = 1 or —1 for
each i =0,1,...,n — 1. The aperiodic autocorrelation of A at shift u is defined as
n—u—1

Ca(u) = Z i gy (1)

It has long been of interest in the study of sequence design to find binary sequences
whose aperiodic autocorrelations are, in some suitable sense, collectively small. Two principal
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measures of “smallness” have been used. One measure (surveyed in [16]) is the merit factor,
introduced by Golay in 1972 [11]:

F(A) = n_1n2 -
2% 1[Ca(u)]

The other measure, and our main interest here, is the peak sidelobe level (PSL):

forn > 1.

M(A):= max |Ca(u).

1<u<n—1

Let A, denote the set of all binary sequences of length n. We would like ultimately to
understand the behaviour, as n — oo, of

M, = in M(4), (2)

and to compare its asymptotic behaviour with that of 1/F,, where F), := maxac., F'(A).

In order to compute M, numerically for a given length n, in the most naive manner,
requires testing 2" different sequences. More efficient algorithms reduce the exponential
term of the time complexity from O(2") to roughly O(1.4") [6], [7], [8]. (We will use the
notation o, O, Q and © to compare the growth rates of functions f(n) and g(n) from N to
R* in the following standard way: f is o(g) means that f(n)/g(n) — 0 as n — oo; f is O(g)
means that there is a constant ¢, independent of n, for which f(n) < cg(n) for all sufficiently
large n; f is £2(g) means that g is O(f); and f is O(g) means that f is O(g) and ©(g).) The
value of M,, has been computed up to n = 70, and it has been found that:

(i) M,, <2 forn <21 (Turyn, 1968 [32]), where M, = 1 is achieved for n =2, 3, 4, 5, 7,
11 and 13 by Barker sequences

(ii) M, <3 for n <48 (Lindner, 1975 [20] for n < 40; Cohen, Fox and Baden, 1990 [6] for
n < 48)

(i) M, < 4 for n < 70 (Elders-Boll, Schotten and Busboom, 1997 [9] for 49 < n < 61;

Coxson and Russo, 2005 [8] for 61 < n < 70, correcting some errors in [7]).

Levanon and Mozeson [18, Table 6.3] list an example sequence attaining M,, for all values of
n < 69 (except those corresponding to lengths of Barker sequences in (i) above).

Theoretical bounds on the asymptotic behaviour of M,, were also known as early as 1968:

Theorem 1.1 (Moon and Moser [26]) If K(n) is any function of n such that K(n) =
o(y/n), then the proportion of sequences A € A,, for which M(A) > K(n) approaches 1 as
n — oo.

Theorem 1.2 (Moon and Moser [26]) For any fized € > 0, the proportion of sequences
A € A, such that M(A) < (24 €)vVnlnn approaches 1 as n — oo.
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It is clear from Theorem 1.2 that for any fixed ¢ > 0, M,, < (2 4 €)vVnlnn when n is
sufficiently large. The constant in this bound has recently been improved:

Theorem 1.3 (Mercer [25]) For any fized e > 0, M,, < (v/2+ €)v/nInn when n is suffi-
ciently large.

We note that there are sequence families for which the PSL grows faster than ©(vnInn),
exceeding the upper bound in Theorems 1.2 and 1.3. An example is the sequence family
F = {A, : n € N} such that each of the n elements of A, is 1. However, it is not currently
known whether there exists any sequence family whose PSL grows like the lower bound o(+/n)
of Theorem 1.1, nor even like ©(y/n). Nonetheless, even these lower bounds appear to be
weak considering the known numerical results for M,, for n < 70. This apparent gap between
the numerical data and the theoretical bounds motivates us to attempt to exhibit an infinite
family of binary sequences whose PSL grows like o(vnlnn) (more slowly than the upper
bound of Theorems 1.2 and 1.3), and preferably like O(y/n).

This rest of this paper is organised as follows. Section 2 introduces three infinite families
of binary sequences whose merit factor behaviour is well understood, at least asymptotically.
Section 3 explains known bounds on the PSL of these families of sequences. Sections 4, 5
and 6 present numerical results and observations on the PSL of Legendre sequences, maximal
length shift register sequences, and Rudin-Shapiro sequences respectively. Section 7 presents
some conclusions and suggestions for further work.

2 Three Families of Sequences

The theoretical approach to the merit factor problem includes the study of specific infinite
families of sequences. We shall be concerned with the families of Legendre sequences, maximal
length shift register sequences, and Rudin-Shapiro sequences. For more detailed information
on these families, see [16] for example.

2.1 Legendre Sequences

The Legendre sequence (also called a quadratic residue sequence) X = (xo,x1,...,Tn_1) of
prime length n is defined so that

S 1 if 7 is a quadratic residue mod n
‘7| =1 otherwise.

By convention, we take zo = 1. A Legendre sequence is equivalent to a cyclic difference set
with parameters from the Hadamard family for n =3 (mod 4) (see [1] or [28] for background
on difference sets) and to a partial difference set for n =1 (mod 4) [22, Theorem 2.1].



When a sequence A = (ag, ayq,...,a,—1) of length n is rotated by a rotational fraction r,
we obtain a new sequence A, = (bg, b1, ...,b,_1) such that

bi ‘= Q(i4|rn)) mod n-
In 1988 Hgholdt and Jensen [14], building on earlier work of Turyn (reported in [12]) and
Golay [12], established:

Theorem 2.1 (Hgholdt and Jensen [14]) Let X be a Legendre sequence of prime length n.
Then

1 g H8(r—1)?F for0<r<j
lim, oo F(X,) | 5+8(r—3%)72% fori<r<l.

It follows that the maximum asymptotic merit factor of any rotation of a Legendre se-
quence is 6, and is achieved when the rotational fraction r is 1/4 and 3/4. Although this
value 6 is the greatest proven asymptotic result for the merit factor of binary sequences, Bor-
wein, Choi and Jedwab [3]| gave strong numerical evidence that there are binary sequences
whose asymptotic merit factor exceeds 6.34. Their construction involves sequences given by
appending the initial elements of some rotation of a Legendre sequence to itself.

2.2 Maximal Length Shift Register Sequences

A mazimal length shift register sequence, also called an m-sequence, ML-sequence, or pseudonoise
sequence, is a binary sequence Y = (Yo, y1, - . ., Yam_2) of length 2™ — 1 for which

yi = (=)™ forall 0 <i< 2™ —1, (3)

where « is a primitive element of the finite field GF(2™), 3 is any fixed nonzero element from
the same field, and tr() is the trace function from GF(2™) to GF(2) defined by tr() : z
St a? (see [24], for example). An m-sequence of a given length 2™ — 1 is not unique, since
the choice of nonzero # and primitive « are arbitrary.

Alternatively we can define an m-sequence Y using a linear recurrence relation. Let
f(z) = 14+ 37", ¢;a' be a primitive polynomial of degree m over GF(2). Define a 0/1
sequence (ag, a1, .. ., asm_s) so that ag, ay, ..., a,_1 take arbitrary values that are not all 0’s,
and

a; = (Z cjal-j> mod 2 form <i< 2™ —1.
j=1

Then set y; = (—1)* for 0 <7 < 2™ — 2 to yield a +1/—1 sequence Y of length 2™ — 1: this
gives an m-sequence. This alternative definition can be physically implemented using a shift
register with m stages [13].

The “window property” of m-sequences [13] implies that, if we fix a primitive polynomial
f(z) and take all 2™ — 1 permitted values of the initial elements (ag, a1, . .., am_1), we obtain
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2™ — 1 different m-sequences that are all possible cyclic shifts of an m-sequence generated
by f(x). Since there are exactly 222D brimitive polynomials of degree m over GF(2) [19,

m

Chapter 3, Theorem 3.15], there are a total of w - (2™ —1) distinct m-sequences of length
2m — 1.

A third equivalent representation of an m-sequence is as a cyclic Singer difference set [24].
In 1989 this equivalence was used to prove:

Theorem 2.2 (Jensen and Hgholdt [17]) The asymptotic merit factor of any rotation
of an m-sequence is 3.

Figure 1 contrasts the difference between the behaviour of the asymptotic merit factor of
Legendre sequences (Theorem 2.1) and m-sequences (Theorem 2.2) as the rotational fraction r
varies.

2.3 Rudin-Shapiro Sequences

Given sequences A = (ag, ay, . ..,a,—1) of length n and A" = (af, a},...,al,_;) of length n/,
let A; A’ denote the sequence (b, by, . . ., by1—1) of length n+n' given by appending A’ to A:

IS B for0<i<n
) d, forn<i<n+n
The Rudin-Shapiro sequence pair X™ and Y™ of length 2 is defined recursively so that
XO =y© .= (1), and

xXm ._ X(mfl);y(m71)7
y(m) .— X(mfl);_y(mfl) for m > 0.

In 1968 Littlewood determined the exact merit factor of a Rudin-Shapiro sequence of any
length 2™:

Theorem 2.3 (Littlewood [21, p. 28]) The merit factor of both sequences X ™ and Y (™
3

of a Rudin-Shapiro sequence pair of length 2™ is w

Consequently, the asymptotic merit factor of both sequences of a Rudin-Shapiro sequence
pair is 3. Rudin-Shapiro sequences differ from Legendre sequences and m-sequences in that
they have no known periodic property (under sequence rotations), such as equivalence to a
difference set or partial difference set. This distinction will be of importance in Section 6.



3 Bounds on the Peak Sidelobe Level of Families of
Sequences

In Section 1 we presented some general bounds on the PSL. In this section we consider bounds
on the PSL of specific families of binary sequences.

We begin with a connection between the merit factor and the PSL of a family of se-
quences. Let F be a family of binary sequences and let each A, € F have length n. Suppose
liminf, . (M(A,)/v/n) = 0. Then, for each n,

0 - 1 _ > a1 [Cau)]? - V= 1D[M(A,)]? _ M4
2F(A,) n n NLD

It follows that liminf, .. (1/4/2F(A,)) = 0 and therefore limsup,,_, . F(A,) = oco. The

converse of this statement is useful:

Proposition 3.1 Let F be a family of binary sequences and let each A, € F have length n.
If {F(A,) : A, € F} is bounded, then M(A,) = Q(y/n).

By Proposition 3.1 and Theorems 2.1, 2.2, and 2.3, the PSL of any rotation of a Legendre
sequence, of any m-sequence, and of a Rudin-Shapiro sequence all grow at least as fast as y/n.

As described in Section 1, we would like to identify a family of sequences whose PSL grows
like o(vnlnn). Among the three families of sequences introduced in Section 2, the largest
asymptotic merit factor is achieved by rotated Legendre sequences. We might therefore
expect that, if any of these families has a PSL that grows like o(v/nlnn), the family of
Legendre sequences (and their rotations) is the most likely candidate; we might even hope
that the PSL of some rotation grows like O(y/n). This is investigated in Section 4.

The PSL of m-sequences Y of length n has been much discussed in the literature. In
1980, McEliece [23] showed that v/n + 11n(en) is an upper bound for M (Y'). In 1984 Sarwate
improved this bound:

Theorem 3.2 (Sarwate [30]) Let Y be an m-sequence of length n. Then
2 4
MY)<14+ZyVn+1h (—") .
m 7r

Theorem 3.2 does not tell us whether the PSL of (some or all) m-sequences grows like
o(vVnlnn). However, Cohen, Baden and Cohen [5, p. 62] state, without reference, that m-
sequences “can achieve peak sidelobe levels (PSLs) on the order of N'/2”! This is the most
modest growth of the PSL that an m-sequence could possibly achieve (Proposition 3.1 and
Theorem 2.2). It is not clear whether the statement in [5] is intended to apply to any rotation
of an m-sequence generated by any primitive polynomial, or only to some (infinite) subset of
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m-sequences. But even if it held for some infinite subset, this would imply that M, (see (2))
grows like O(y/n). This would greatly improve on Moon and Moser’s Theorem 1.2, and
indeed would render Mercer’s improvement (Theorem 1.3) of little value.

However we were unable to find a proof or supporting numerical evidence for this claim.
For example, Farnett and Stevens [10, 10.21] state that the PSL of m-sequences is “approx-
imately” /n for large n. Cohen [4, p. 486] makes the same statement, adding that “as N
increases, the rule-of-thumb approximation improves”. But neither author gives a reference.
Likewise Vakman [33, p. 182-183] claims that the PSL of m-sequences grows like O(y/n), and
further states: “It has been noted repeatedly that either by empirical methods, by combining
several M-sequences, or, finally, by constructing other types of sequences, it is possible to
find [other long sequences for which the PSL grows like O(y/n)]”. Once again, however, no
reference is given, and [33] describes the proof for m-sequences as being “beyond the scope
of this book”. We therefore regard this claim to be unproven and currently unsupported.

We investigate the PSL of families of m-sequences numerically in Section 5, testing its
growth against the claimed bounding function /n and also against the function v/n Inn.

In Section 6 we study the PSL of Rudin-Shapiro sequences and their rotations, as an
example of a sequence family with no known periodic property. Although an upper bound
for the PSL of unrotated Rudin-Shapiro sequences is known, it is weak in comparison with

the function vn lnn:

Theorem 3.3 (Hgholdt, Jensen and Justesen [15]) The PSL of both sequences X ™
and Y™ of a Rudin-Shapiro sequence pair of length n = 2™ grows like O(n"?).

4 The Peak Sidelobe Level of Legendre Sequences

In this section we compare the growth of the PSL of Legendre sequences with the functions
v/ and vnlnn (see Section 3). Write R = {0,%,..., 21} and let X be a Legendre sequence

' n?

of prime length n. We calculated M (X, ) for all » € R for various values of n, using similar
strategies to those described in [16, Section 3.2] for efficiency.

Figure 2 shows the variation of M (X,) with the rotational fraction r, for n = 49,999 and
n = 104, 729. Similar shapes of graph were obtained for all lengths tested. (After submitting
this paper we became aware that in 2005, prior to the start of our investigation, Schotten
and Liike [31, Figure 2] presented a graph corresponding to Figure 2 for six values of n in
the range 211 < n < 10007.) The shape of the graphs closely resembles that of the graph
of 1/1lim,, ., F'(X,) against r (see Figure 1 left), in particular achieving a minimum value at
approximately r = 1/4 and r = 3/4. The obvious difference between the shape of the graphs
for M and asymptotic 1/F' is that “fuzziness” seems to persist in the graph of M (X,) at all
lengths.

Figure 3 shows the variation of min,cp M(X,) with length n for the first 3500 prime
lengths (n < 32609). (The data set underlying Figure 3 was previously calculated for primes n
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in the much smaller ranges 7 < n < 113 (Boehmer, 1967 [2]) and 67 < n < 1019 (Rao and
Reddy, 1986 [29]). Since the minimising value of r was found to be approximately 1/4 for
various lengths n, Figure 3 also shows the variation of M(Xj,,) with n for n < 41081. Both
graphs have a similar shape, although there is more variation in the second case.

We now compare the growth of the two functions, min,cgr M(X,) and M (X;4), with
v/n and with vnlnn. Figure 4 shows the variation of min,cp M(X,)/v/n and M(X1,4)/v/n
with n. Both graphs show increasing functions, from which we conclude that the orig-
inal two functions both grow at least as fast as /n. Figure 5 shows the variation of
min,cp M(X,)/vnlnn and M(X,,4)/vnlnn with n. Both graphs now show functions that
appear to approach a nonzero constant, which suggests that min,cp M (X,) and M (X;/4)

both grow like ©(v/nlnn).

Based on the numerical evidence displayed in Figures 4 and 5, we conclude tentatively
that min,cp M(X,) and M(X;,4) both grow like ©(v/nInn). This is contrary to our initial
expectation for the growth of the PSL of Legendre sequences.

5 The Peak Sidelobe Level of m-Sequences

In this section we compare the growth of the PSL of m-sequences with the functions /n and
vnlnn. Our main interests are in testing the claim that the PSL of m-sequences grows like
O(y/n), and in identifying a family of sequences for which the growth of the PSL is o(v/nInn)
(see Section 3).

Let R = {0, %, cee ”T_l} as before, and let Y be an m-sequence of length n = 2™ — 1.
We used the recurrence relation definition of an m-sequence (see Section 2.2) to calculate
M(Y,) for all » € R. This was done for all w primitive polynomials f(x) of degree
m over GF(2) for m < 15 (length n < 32,767), and for selected primitive polynomials of
degree m over GF(2) for 16 < m < 20 (length n < 1,048,575). The computational burden
was reduced by a factor of 2 for m > 2 by noting that the 2™ — 1 m-sequences generated
by f(z) are the reverse of those generated by its reciprocal polynomial ™ f(z~!) (which is
distinct from f(x)), and that sequence reversal does not affect the aperiodic autocorrelations
defined in (1). For example, the exhaustive computation for m = 15 was completed using
900 primitive polynomials obtained from Appendix C of [27], each generating a sequence that
was examined at each of its 32,767 distinct rotations.

Figure 6 shows the variation of M (Y;) with the rotational fraction r, for two specific m-
sequences. The shape of both graphs resembles that of the graph of 1/lim,, ., F(Y,) against
r (see Figure 1 right), but with “fuzziness” appearing to persist in the graph of M(Y;) at all
sequence lengths. This similarity between the graphs of M and asymptotic 1/F mirrors the
behaviour for Legendre sequences noted in Section 4.

Our initial analysis of the exhaustive m-sequence data (for m < 15) kept the results for
each primitive polynomial separate, and calculated the minimum, mean and maximum value



of the PSL over all rotations r € R. However we were unable to explain the variation of these
values in terms of the primitive polynomial, and so we pooled the PSL data for all rotations
of all m-sequences of the same length.

Indeed, let ), be the set of all w - (2™ — 1) m-sequences of length 2™ — 1. Table 1
shows the variation with m of the minimum, mean and maximum value of M(Y') over all
m-sequences Y € ), for m < 15, together with partial data for 16 < m < 20. Figure 7
displays these values, taking In of both co-ordinates in order to spread out the data points.
Table 1 also compares the calculated PSL values for m-sequences for 2 < m < 6 with the
known optimal value Mam_; (see (2)).

We now compare the growth of the minimum, mean and maximum value of M (Y") with
v/n and Vnlnn. Figure 8 shows the variation of these values with Inn, after division by
Vvn (left) and vnlnn (right). For the mean values )y cy, M(Y')/|Vn], the left graph shows
a (broadly) increasing function while the right graph shows a strictly decreasing function.
We conclude that the mean value of the PSL over all m-sequences of length 2™ — 1 grows
like Q(y/n) (as we already knew from Proposition 3.1 and Theorem 2.2), and like O(v/nInn)
(which, if true, would improve on the upper bound of Theorem 3.2). This empirical conclusion
implies that the minimum PSL of m-sequences also grows like O(vnlnn).

In light of the numerical evidence presented, we consider the claim that the PSL of m-
sequences grows like O(y/n) is not currently supported by data. We believe it would be
challenging to collect sufficient computational data to settle this question with reasonable
confidence. Nonetheless, it seems that the mean value of the PSL of m-sequences is more
likely to achieve the desired growth rate of o(v/nlInn) than the PSL of Legendre sequences
(see Section 4).

6 The Peak Sidelobe Level of Rudin-Shapiro Sequences

In this section we pursue the apparent similarity between the shape of the graphs of M
and asymptotic 1/F as the rotational fraction r varies, as observed in the case of Legendre
sequences in Section 4 and m-sequences in Section 5. We assumed that this similarity de-
pends on an underlying periodic property, the property in these cases being equivalence to
a difference set or partial difference set. We tested this assumption using the Rudin-Shapiro
sequences, which have no known periodic property.

To our knowledge the merit factor of Rudin-Shapiro sequences under cyclic rotation has
not previously been studied; all that is known regarding the merit factor is Theorem 2.3.
Let (X, Y () be a Rudin-Shapiro sequence pair of length n = 2™. Figure 9 shows the
variation of 1/F((X™),) with the rotational fraction r € R, for m = 10 and for m = 16.
Similar shapes of graph were obtained for all values 9 < m < 16 (whereas for m < 8 there
are too few data points to discern such a clear shape). F((X(™),) appears to lie between
3/2 and 3 for all r, when m is large.



The PSL of the unrotated sequence X grows like O(n%?), by Theorem 3.3. Figure 10
shows the variation of M((X(™),) with r € R for m = 10, 12, and 16. The shape of
the graphs becomes more regular as m increases, apparently approaching a piecewise linear
function composed of 12 pieces with minima at » = 0, 1/4, 3/8, 1/2, 3/4, and 7/8. Unlike
the case of Legendre sequences (Figure 2) and m-sequences (Figure 6), there appears to be
no “fuzziness” in the graph of M at large lengths. Perhaps more surprisingly, there is still a
considerable similarity between the graphs of M and 1/F as r varies (comparing Figure 10
to Figure 9). We conclude that this phenomenon is not restricted to sequences having an
underlying periodic property.

We performed the same calculations for the other sequence Y™ of the Rudin-Shapiro
pair. The corresponding graphs, both for M and 1/F, appeared to be the reflection of those
for X(™ about the line r = 1/2.

7 Conclusions

We summarise our main conclusions as:

(i) The PSL of the optimal rotation of a Legendre sequence of prime length n appears to
grow like ©(vnlnn), contrary to our initial expectation of o(v/nlnn) growth.

(ii) The mean value of the PSL of m-sequences of length n = 2™ — 1 seems to grow like
Q(y/n) and like O(v/nlnn). We consider the claim that the PSL of m-sequences grows
like O(y/n) to be unproven and not currently supported by data.

(iii) For large n, the graphs of the variation of M (A, ) and 1/F(A,) with rotational fraction r
have a similar shape, where A is a Legendre sequence, an m-sequence, or a Rudin-
Shapiro sequence of length n. This phenomenon does not seem to be restricted to
sequence families having an underlying periodic property.

We suggest the following would be of interest for future work:

(i) Determine theoretically if the PSL of an optimal rotation of a Legendre sequence is

really given by ©(vnlnn).

(ii) Determine the actual rate of growth of the mean PSL of m-sequences. Prove or disprove
the claim that the PSL of some or all m-sequences grows like O(y/n).

(iii) Explain the apparent similarity, for large n, between the graphs of the variation of
M(A,) and 1/F(A,) with r for various sequence families {A}.

(iv) Explain the apparent behaviour of M ((X™),) for a Rudin-Shapiro sequence X ™ for
large m, as described in Section 6 and illustrated in Figure 10.
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Figure 1: Variation of 1/[lim,,_.., (X, )] with r for a Legendre sequence X (left) and variation
of 1/[lim,,_,« F(Y,)] with r for an m-sequence Y (right)
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Figure 2: Variation of M (X,) with r for Legendre sequences of length n = 49,999 (left) and
n = 104,729 (right)
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m [ 27— 1] Mymy | min M(Y) ngM(Y)/\ym! max M(Y)
2 3 1 1 1.33 2
3 7 1 1 2.14 3
1 15 2 3 3.60 5
5 31 3 1 5.16 7
6 63 1 6 7.84 11
7 127 — 8 11.71 16
8 255 — 13 16.88 22
9 511 — 19 24.89 34
10 1023 — 29 35.93 46
11| 2047 — 2 52.20 68
12 4095 — 61 76.45 107
13| 8191 - 85 108.74 144
14| 16383 - 125 156.08 207
15| 32767 — 175 222 28 295
16| 65535 — (260) — (358)
17 | 131071 — (379) — (547)
18| 262143 — (560) — (779)
19 | 524287 — (790) — (1135)
20 | 1048575 — (1221) — (1422)

Table 1: Summary of results on the PSL of m-sequences Y:
exhaustive data for 2 < m < 15, selected data for 16 < m < 20.
(Vi is the set of all m-sequences of length 2™ — 1. Numbers within round
brackets indicate the min / max from partial computation for that m.)
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